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LETTER TO THE EDITOR 

Dynamical phase transition in non-symmetric spin glasses 

B Derrida 
Service d e  Physique ThBorique, CEN Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 21 April 1987 

Abstract. Non-symmetric spin glasses are spin models for which the pair interactions 
between the spins are random but not symmetric. By studying the time evolution of two 
configurations in a mean-field model, one finds a transition temperature To. For T >  To, 
two different initial conditions end up by becoming identical after an infinite time. This 
means that the thermal noise is strong enough to eliminate the memory of the initial 
conditions. For T f To, two different initial conditions never become identical. 

If one considers the time evolution of a dynamical system in presence of thermal noise, 
its configuration %', at time t depends both on its initial condition go and on the effect 
of thermal noise between times 0 and 1. In the limit t + CO, there are two possibilities: 
either %, becomes independent of Ce0 or not. 

Therefore one can expect to observe two possible phases: a high-temperature phase 
where the thermal noise is strong enough to make the system forget its initial condition 
To and a low-temperature phase where the system in the limit t +co  still depends on 
V0. Of course, if one can show that some correlation functions between V0 and %, 
do not decay to zero in the limit r + CO, it is clear that the system is in its low-temperature 
phase. However, it may happen that W, depends on Ce0 in a very complicated way 
which cannot be seen in the study of simple order parameters. 

In the present letter, a diluted and asymmetric spin glass model is studied which 
possesses these two phases. By studying the time evolution of the distance between 
two configurations, one finds that there is a transition temperature To below which the 
distance between two configurations does not vanish in the long time limit. 

Models of non-symmetric spin glasses have already been studied in the mean-field 
limit (Hertz er al 1986, Bausch et a1 1986, Sompolinsky 1987, Gutfreund er a1 1987). 
In the cases considered up to now, the spin glass phase seems to be absent, at least 
when one looks at the spin-spin correlations at different times. The purpose of this 
letter is to show that a transition does exist at finite temperature when one considers 
the distance between two configurations. Whether this dynamical transition can be 
related to the appearance of a spin glass phase is not clear and will not be discussed 
in the present work. 

The model considered here is a system of N Ising spins (vi = * l )  which are 
connected by random interactions J,.  The interactions J ,  and Jji are independent and 
randomly distributed according to 
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where c is a finite number and 

From (1) it is easy to see that the probability that site i has K non-zero interactions 
.Tu is c K  e-'/ K !. The choice of a Gaussian (2) for po makes some of the calculations 
which follow simpler but everything can be generalised to any other distribution po.  

The dynamics of the model are defined by the following rule. At time t, the fields 
hi (  t )  are computed: 

hi( t )  = 1 Ji ju j (  t )  + h 
j 

where h is the external field. Then all the spins ai are updated: 

(3 )  

ui ( t + 1 ) = + 1 

ai( t + 1) = -1 

with probability [ 1 + exp( -2hi(  t ) /  T )] - '  

with probability [1+ exp(2hi( t ) /  T11-I. 
(4) 

The parameter T in (4) defines the temperature of the system. 
Other probabilistic algorithms could be chosen to define the dynamics at finite 

temperature. For other dynamics than (4) it may happen that the exact solution which 
follows could not be generalised. 

The dynamics (4) are parallel dynamics since all the spins are updated at the same 
time. It is easy to show (Derrida et a1 1987) that random sequential dynamics, where 
at each time step a randomly chosen spin is updated, lead to the same results in the 
limit t + CO. 

Let us consider two spin configurations {a,( t ) }  and {a:( t ) }  which evolve according 
to exactly the same dynamics. This means that, at each time step, the two fields h,( t )  
and h : ( t )  are calculated by the formula (3)  with the same set of J ,  and also that the 
same random number (Stauffer 1987) is used to decide whether a,( t + 1) and a:( t + 1) = 
+1 or -1 according to (4). Therefore if h , ( t )  = h : ( t ) ,  this implies that a,(t+ 1) = 
a:( t + 1). Choosing the same random number to update the an and a: means that the 
two configurations are subjected to the same thermal noise. 

Let us define the distance D(t) between the two configurations by 

where D( t )  is just the fraction of sites i such that ai( t )  = -ai( t ) .  
The time evolution of D( t )  is given in the thermodynamic limit ( N  + CO) by 

X dx 1-y dy exp( - X2 

2 n J 2 J p (  K - p )  --jc 

x ((1 + exp[ -2(x + (yl+ h ) /  TI}-' - { 1 + exp[-2(x - /yl+ h ) /  TI} - ' ) .  (6) 

Iterating this formula gives the distance D ( t )  at any finite t if one knows its initial 
value D(0).  

The derivation of (6) is a straightforward generalisation to the problem studied 
here of a method which was already used for a diluted neural network model (Derrida 
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et a1 1987) and for random networks of automata (Derrida and Weisbuch 1986). Let 
us just briefly see how it is derived. 

First, as long as c is small (Derrida et a1 1987), 

c<< log N (7) 
the quenched model for which the Ji, are randomly chosen at time t = 0 and remain 
fixed at later times, and the annealed model for which the JV are changed at each time 
step both have D( t )  given by the same expression (6). The reason for this was explained 
in detail in Derrida and Weisbuch (1986) and Derrida er a1 (1987) and is a consequence 
of the fact that the input sites j of almost all sites i are not correlated at any finite 
time. So when condition (7) is valid, the calculation can be done for the annealed model. 

If one looks at formula (6 ) ,  the term cKe-‘/K! is the density of sites having K 
interactions JV # 0. Among these K input sites j of a given site, the probability that p 
of them are different (aj( t )  = -a;( t ) )  and K - p  are identical (aj( t )  = a;( t ) )  is 

K !  
p ! ( K  - p ) !  ‘ 

D( t )” (  1 - D( t ) ) K - p  

The values of the fields hi( t )  and hi( t )  produced on site i by the spins aj( t )  and 
aj(t) can be written as 

hi( t )  = c JVUj( t ) + h = x + y + h 

h I (  t )  = c J&( t )  + h = x - y + h 
j 

(8) 

where x is the sum over the spins j which are identical in configurations U and U’ and 
y is the sum over the different spins. Clearly x and y are random Gaussian variables 
of width ( K  - p ) J 2  and p J 2 ,  respectively, since they are the sum of K - p and p random 
Gaussian variables distributed according to po (2). The last factor in (6) tells us the 
probability that a random number between 0 and 1 is such that ai( t + 1) and U ; (  t + 1) 
have opposite signs (see (4)). 

Formula (6) allows the calculation of D ( t )  at any temperature and at any finite 
time t (in the thermodynamic limit). 

One can then study the long time behaviour. Clearly, everything is described by 
the mapping D( t )  + D( t + 1) given by equation (6). The phase diagram in terms of c, 
T and h depends on the structure and on the stability of the fixed points (or attractors) 
of this map. 

The easiest thing to study is the fixed point D=O.  If it is attractive (dD( t+  
l ) /dD(  t )  < l ) ,  this means that two different configurations which are close end up by 
becoming identical. If it is repulsive, this means that two different configurations 
(which differ by a finite fraction of spins) never become identical. The surface To(c, h )  
where this fixed point D = 0 changes its stability is given by 

i 

X2 
+OD 

dyexp - 1 m C K  e - ~  

1= K = ]  c ~ ( K - l ) !  27rJ2(K-l)”21:,adx.I-OD ( 2(K-1)J2  2J2 

x ({exp[-2(x+lyl+h)/To]+ 1}-’-{exp[-2(x-~y(+h)lT01+1}-’) .  (9) 
Since the expansion of D( t + 1) contains linear and quadratic terms in D( t ) ,  one 

can also see that D(co) vanishes linearly as To- T: 

D ( a )  - To- T. (10) 
In some special situations, formulae (6) and (9) can be simplified. 
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For example, in zero field ( h  = 0) and in the low-temperature limit ( T +  0), the 
mapping ( 6 )  becomes 

and the fixed point D = 0 is only stable if c < co with 

c = 2.206 15.. . . (12) 

Therefore for c < c o ,  at all temperatures including T = 0 ,  the system is in its high- 
temperature phase whereas for c >  co, the low-temperature phase exists up to a finite 
temperature To(c) which vanishes as c + co. It is interesting to notice that co is a 
concentration higher than the percolation threshold c = 1 where some sites start to be 
connected to an infinite cluster (i.e. to have an infinite number of ancestors). 

Another simple situation is the limit where c becomes large. Then one finds that 
the transition temperature To becomes 

This result shows that the transition exists even in non-zero field and that To(h)  
decreases when h increases. This is somewhat reminiscent of the de Almeida and 
Thouless (1978) transition in the mean-field spin glass although the shape of To(h)  at 
h = 0 is different. 

In this letter we have seen that a model of a non-symmetric spin glass exhibits a 
dynamical phase transition at finite temperature. This result could easily be generalised 
to similar models with non-symmetric distributions of bonds or multispin interactions. 
Complicated situations could then occur with several attractive fixed points of the 
mapping (6). 

It would be interesting to see whether the phase transition described in this letter 
is still present when one uses other probabilistic algorithms to define the finite- 
temperature dynamics. 

For symmetric interactions, the analytic method used here does not work. (The 
annealed and the quenched models become different at the second time step.) However, 
one could try to study the same quantity D ( t )  in order to see whether the spin glass 
transition (of the system at equilibrium) can be seen in the long time behaviour of 
D ( t ) .  Derrida and Weisbuch (1987) have studied the * J  model in three dimensions 
and we intend to present our results in a forthcoming work. 

It is a pleasure to thank E Gardner, H Sompolinsky, G Weisbuch and A Zippelius for 
many discussions. 
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